

This document is prepared from the following University Notifications

- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem1.pdf
- https://www.du.ac.in/uploads/new-web/notifications-2021/28032023_nep-Faculty%20of%20Interdisciplinary%20&%20Applied%20Sciences.pdf
- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem3.pdf
- https://www.du.ac.in/uploads/new-web/18092023_Inter_4.pdf

DISCIPLINE SPECIFIC ELECTIVES (DSE-3)

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Network Synthesis	4	3	-	1	Class XII passed with Physics + Mathematics/Applied Mathematics + Chemistry OR Physics + Mathematics/Applied Mathematics + Computer Science/Informatics Practices	Circuit Theory & Network Analysis (DSC-2, Sem I), Engineering Mathematics DSC(7, Sem III)/Signals and Systems (DSC-9, Sem III)

Learning Objectives

The Learning Objectives of this course are as follows:

- To study the basic frequency domain techniques and two port network parameters.
- To study the elements of network synthesis.
- To study and synthesise the one port networks with two kinds of elements.
- To study the synthesis of transfer function.
- To study and design the filters

Learning outcomes

The Learning Outcomes of this course are as follows:

- Apply the knowledge of frequency domain techniques and two port network parameters.
- Understand the basic concepts of network synthesis.
- Synthesise the one-port networks and transfer function.
- Determine the frequency response of filters.

This document is prepared from the following University Notifications

- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem1.pdf
- https://www.du.ac.in/uploads/new-web/notifications-2021/28032023_nep-Faculty%20of%20Interdisciplinary%20&%20Applied%20Sciences.pdf
- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem3.pdf
- https://www.du.ac.in/uploads/new-web/18092023_Inter_4.pdf

SYLLABUS OF ELDSE-2C

Total Hours- Theory: 45 Hours, Practicals: 30 Hours

UNIT – I (12 Hours)

Circuit Analysis: Concept of Poles and Zeros in complex frequency/s-plane, Initial and Final Value Theorem, Representation of Circuit Elements in s-domain, Circuit Analysis using Laplace Transform Method, The System Function for R-C and R-L Networks and their Impulse and Step Responses.

Two Port Network Parameters: Impedance (Z) Parameters, Admittance (Y) Parameters, Transmission (ABCD) Parameters, Hybrid (h) Parameters.

UNIT – II (10 Hours)

Elements of Network Synthesis: Causality and Stability, Hurwitz Polynomial, Sturm's Theorem, Positive Real Functions, Basis Synthesis Procedures.

UNIT – III (11 Hours)

Synthesis of One Port Networks with Two Kinds of Elements: Properties of L-C Immittance Functions, Synthesis of L-C Driving-Point Immittances, Properties of R-C Driving Point Impedances, Synthesis of R-C Impedances or R-L Admittances, Properties of R-L Impedances and R-C Admittances, Synthesis of R-L-C Functions.

UNIT – IV (12 Hours)

Transfer Function Synthesis: Properties of Transfer Functions, Synthesis of L-C Ladder Network with a 1-ohm Resistive Termination, Synthesis of Constant-Resistance Networks (Bridge and Lattice Type).

Filter Design: Ideal Filters, Low Pass Filter Design using Butterworth and Chebyshev approximation and Comparison between them.

Practical component (if any) – Network Synthesis

(Hardware/Software/Simulation Software)

Learning outcomes

The Learning Outcomes of this course are as follows:

- Verify the operation and response of typical electrical circuits.
- Determine the various parameters for two-port networks.
- Prepare the technical report on the experiments carried.

LIST OF PRACTICALS (Total Practical Hours – 30 Hours)

1. Mesh and Node Analysis of circuits using AC Sources.
2. Computation and plot of Poles, Zeros and Stability of a Function.
3. Study of step response of RC Network.

This document is prepared from the following University Notifications

- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem1.pdf
- https://www.du.ac.in/uploads/new-web/notifications-2021/28032023_nep-Faculty%20of%20Interdisciplinary%20&%20Applied%20Sciences.pdf
- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem3.pdf
- https://www.du.ac.in/uploads/new-web/18092023_Inter_4.pdf

4. Study of step response of RL Network
5. Computation and plot of Inverse-Laplace Transform of a Function.
6. Determination of Impedance (Z) and Admittance (Y) parameters of Two-Port Network.
7. Determination of ABCD Parameters of Two-Port Network.
8. Determination of Hybrid (h) Parameters of Two-Port Network.
9. Designing of a Low Pass Filter (Butterworth Approximation) and study of its Frequency Response.
10. Designing of a Low Pass Filter (Chebyshev Approximation) and study of its Frequency Response.

Note: Students shall sincerely work towards completing all the above listed practicals for this course. In any circumstance, the completed number of practicals shall not be less than nine.

Essential/recommended readings

1. Kuo, F. F., "Network Analysis and Synthesis", 2nd Ed., Wiley India (2013).
2. M. E. Van Valkenburg, "Introduction to Modern Network Synthesis", Wiley Eastern (1984).

Suggestive readings

1. Aatre, V. K., "Network Theory and Filter Design", 3rd Ed., New Age International (2014).

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.